
Introduction to ChatGTP Integration in RStudio
Abby Muricho Onencan

Session One: Setup and Packages “askgpt” and “air”

1. OPENAI CHAT GPT SETUP

Step 1: Obtain API Key

Obtain an API key from OpenAI at [https://openai.com/api/%5D. Click on “API keys” under
“Manage Account” to create a new key.

Step 2: Load Necessary Libraries:
library(httr) # library(httr) for making HTTP requests
library(jsonlite) # library(jsonlite) to load a JSON parser and Generator

Step 3: Define your OpenAI API key and request body:
1. Define your OpenAI AP
2. Define request body
3. Choose a model
4. Define the test message
5. Set the maximum tokens
6. Set the temperature

open_ai_key <- "YOUR_API_KEY"
 request_body <- list(
 model = "gpt-3.5-turbo-0125",
 messages = list(
 list(role = "user", content = "Say this is a test")
),
 max_tokens = 50,
 temperature = 0.7
)

https://openai.com/api/%5D

Step 4: Test request completion:

Send the POST request to OpenAI
response <- POST(
 url = "https://api.openai.com/v1/chat/completions",
 add_headers(
 "Content_Type" = "application/json",
 "Authorization" = paste("Bearer", open_ai_key)
),
 body = request_body,
 encode = "json"
)

Extract and print the response
response_content <- content(response, encoding = "UTF-8")
print(response_content)

$id
[1] "chatcmpl-99YMQNXSxwjTeVIA4y2iyVHTniTTp"

$object
[1] "chat.completion"

$created
[1] 1712064062

$model
[1] "gpt-3.5-turbo-0125"

$choices
$choices[[1]]
$choices[[1]]$index
[1] 0

$choices[[1]]$message
$choices[[1]]$message$role
[1] "assistant"

$choices[[1]]$message$content
[1] "This is a test."

$choices[[1]]$logprobs
NULL

$choices[[1]]$finish_reason
[1] "stop"

$usage
$usage$prompt_tokens
[1] 12

$usage$completion_tokens
[1] 5

$usage$total_tokens
[1] 17

$system_fingerprint
[1] "fp_b28b39ffa8"

If you encounter error:

1. Verify proper API key
2. Check monthly API limit from OpenAI
3. Ensure you’re within the API limit
4. Confirm API key access to the desired model

2. PACKAGE ASKGPT
• Created by Johannes Gruber, the askgpt package is available on CRAN.
• New to R? Confused by tutorial code or error messages? Use askgpt! More

information
• Users can utilize the chat_api() function to set OpenAI API parameters.
• It’s like R’s ChatGPT, offering help on errors and providing a handy RStudio addin

for annotating code.
• The package offers a general askgpt() function for queries.
• Also there are coding-specific functions like annotate_code(), explain_code(),

and test_function().

 library(askgpt) # library(askgpt) for Asking GPT About R Stuff

Hi, this is askgpt ☺.
• To start error logging, run `` `log_init()` `` now.
• To see what you can do use `?askgpt()` (`?askgpt::askgpt()`).
• Or just run `` `askgpt()` `` with any question you want!

https://cran.r-project.org/web/packages/askgpt/index.html
https://github.com/JBGruber/askgpt?tab=readme-ov-file#usage
https://github.com/JBGruber/askgpt?tab=readme-ov-file#usage

1. The most important setting, however, is askgpt_config
options(askgpt_config = "I'm 8 years old, please explain things easily")
askgpt("What is a function in R programming?")

✔ GPT is thinking ⠼ [5s]

Answer

In R programming language, a function is a block of code that performs a specific task or
operation. Functions are essential in R because they allow you to encapsulate a sequence of
operations into a reusable unit.

You can create your own functions in R using the function() keyword, where you define
the inputs (arguments) and outputs (return values) of the function. Functions in R can be
simple, such as performing basic arithmetic operations, or complex, such as fitting a
statistical model or performing data manipulation tasks.

For example, here is a simple R function that adds two numbers:

add_numbers <- function(a, b) {
result <- a + b
return(result)
}

Call the function
sum_result <- add_numbers(5, 3)
print(sum_result) # Output will be 8

In this example, the add_numbers function takes two arguments a and b, adds them
together, and returns the result. This is just a simple illustration, and R functions can be
much more complex depending on the task at hand.

2. Get to know each other:
askgpt("who are you?")

✔ GPT is thinking ⠸ [2.4s]

Answer

I am an AI digital assistant created to provide information, assistance, and support on a
wide range of topics. My purpose is to help answer questions, offer guidance, and engage in
meaningful conversations with users like you. If you have any queries or need assistance
with anything, feel free to ask!

3. Login help:
askgpt("How do I login to chatgpt?")

✔ GPT is thinking ⠼ [4.8s]

Answer

I apologize for any confusion, but as of my current capabilities, I am not associated with
ChatGPT or any specific login system. However, to log in to a platform like ChatGPT or any
other system, you would typically follow these steps:

1. Visit the ChatGPT website or platform where the login option is available.
2. Look for the “Login” or “Sign In” button on the homepage or login page.
3. Enter your username or email address and password in the provided fields.
4. Click on the “Login” or “Sign In” button to submit your credentials.
5. If the information you provided is correct, you will be logged in and directed to your

account dashboard or main interface.

If you encounter any issues or have difficulty logging in, be sure to check for any error
messages, verify that you are using the correct login credentials, and consider any
password reset options if needed. For specific instructions related to ChatGPT or another
platform, I recommend referring to their official website or contacting their support team
for direct assistance.

4. You are new to Rstudio and have no idea where to start:
askgpt("I have no idea how to use Rstudio, help")

✔ GPT is thinking ⠧ [7.4s]

Answer

Sure! I can provide you with a basic overview of how to get started with using RStudio.
RStudio is an integrated development environment (IDE) for the R programming language
that provides tools and features to make coding in R more efficient and organized. Here are
some steps to help you get acquainted with RStudio:

1. Download and Install R and RStudio:
• Before using RStudio, you need to have R installed on your computer. You can

download R from the Comprehensive R Archive Network (CRAN) website.
• After installing R, download and install RStudio from the RStudio website.
2. Open RStudio:
• Once RStudio is installed, open the application. You will see different panels such as

the script editor, console, environment, and files on the screen.
3. Script Editor:
• The script editor is where you write your R code. You can create new scripts, save

them, and run the code by clicking on the “Run” button or using keyboard shortcuts.
4. Console:

• The console is where you can directly type and execute R commands. You can see
the output of your commands and interact with R in real-time.

5. Environment and Files Panels:
• The environment panel displays information about variables and objects in your R

session. The files panel allows you to navigate files and folders on your computer.
6. Installing Packages:
• You can install additional R packages by running

install.packages("packagename") in the console. This allows you to access
additional functions and tools for your R projects.

7. Getting Help:
• If you need help with a specific function or topic, you can use the ? operator

followed by the function name to access help documentation.
8. Saving Your Work:
• Save your R scripts by clicking on “File” > “Save As” in the script editor. This helps

you keep track of your code and projects.

These are some basic steps to help you get started with using RStudio. As you continue to
work with R and RStudio, you will discover more features and tools that can enhance your
coding experience. Feel free to ask if you have any specific questions or need further
assistance!

5. Remind chatGPT that you are an 8-year-old:
askgpt_config = "I'm 8 years old, please explain things easily"

askgpt("Please explain for an 8 year old")

✔ GPT is thinking ⠸ [4.6s]

Answer

Sure! Imagine RStudio as a magical toolbox that helps you do fun math and make cool
pictures on the computer. It’s like having a special pencil that can understand and draw
whatever you imagine.

When you open RStudio, you will see a colorful place where you can write down your math
problems and tell the magical toolbox what to do. You can type in numbers and special
words that make the computer do different tricks.

When you click a button called “Run”, the magical toolbox will read what you wrote, solve
your math problems, and show you the answers on the screen. It’s like having a teacher
who helps you learn math in a fun way.

You can also ask the magical toolbox to draw colorful pictures and graphs with your
numbers. It’s like having a magical coloring book that creates beautiful pictures for you to
see and share with others.

Just like playing with toys, you can explore and create amazing things with RStudio. It’s a
fun way to learn math and make wonderful pictures on the computer!

6. Knit problems with askgpt:
askgpt("do you know why I cannot knit when I am using askgpt?")

✔ GPT is thinking ⠙ [4.3s]

Answer

It appears you are facing difficulties with using the “knit” functionality in RStudio while
interacting with AskGPT. The “knit” feature in RStudio allows you to convert R Markdown
documents into different formats such as HTML, PDF, or Word documents. If you are
experiencing challenges with this feature on AskGPT, there are a few potential reasons and
solutions to consider:

1. Resource Limitations: AskGPT, being an online chatbot platform, may have
resource limitations that prevent resource-intensive tasks like knitting large R
Markdown documents. Simplifying your R Markdown document or reducing its
complexity may help overcome this limitation.

2. Internet Connectivity: Ensure that your internet connection is stable and strong, as
slow or intermittent connections may inhibit processes like knitting files.

3. R Environment: Since AskGPT may not provide a direct connection to your local R
environment, the knitting process might be affected. Consider working on your code
locally using R and RStudio on your machine for more control over the environment.

4. Error Messages: Look for any error messages or notifications that may provide
insights into why the knitting process is failing. Addressing any specific errors can
help troubleshoot the issue.

If these suggestions do not resolve the problem, consider reaching out to the relevant
support channels for AskGPT or the hosting platform to determine if there are any
restrictions or alternatives to enable the knitting function.

7. Ask a coding question and save as a variable:

askgpt’s default is to store the results of your query as an object and they can be saved as a
variable (linechart_instructions <-).

askgpt("Create a line graph with multiple lines representing different
groups (old, young, infants), use the provided sample data and ggplot2
library in R. Finally, print the line graph.")

✔ GPT is thinking ⠸ [8.6s]

Answer

To create a line graph with multiple lines representing different groups (old, young,
infants) using the ggplot2 library in R, you can follow these steps utilizing a sample dataset:

First, ensure the ggplot2 package is installed by running install.packages("ggplot2") if
you haven’t done so yet. Then, you can proceed with the following code:

Load the ggplot2 library
library(ggplot2)

Create a sample dataset
data <- data.frame(
Age = rep(c("old", "young", "infants"), each = 5),
Year = rep(2000:2004, times = 3),
Value = c(10, 15, 20, 25, 30, 5, 10, 15, 20, 25, 2, 5, 8, 11, 14)
)

Create a line plot with multiple lines for different groups
ggplot(data, aes(x = Year, y = Value, color = Age, group = Age)) +
geom_line() +
labs(title = "Line Graph with Multiple Lines for Different Groups",
x = "Year", y = "Value") +
scale_color_manual(values = c("red", "blue", "green")) +
theme_minimal()

In this example: - We create a sample dataset with columns for Age, Year, and Value. - The
ggplot() function from ggplot2 is used to initialize the plot with the data and aesthetics. -
geom_line() is employed to create lines based on the specified x and y values. - The labs()
function sets the title and axis labels of the plot. - scale_color_manual() is used to assign
colors to the different groups. - Finally, theme_minimal() provides a simple and clean
theme for the plot.

By running this code snippet, you can generate a line graph illustrating multiple lines for
the age groups old, young, and infants, with their respective values over the years. Feel free
to adjust the dataset and visual elements to suit your specific data and preferences.

Check if the askgpt solution works (the results may be different eveytime you run the prompt)

Create sample data
set.seed(123)
data <- data.frame(
age = rep(c("old", "young", "infants"), each = 10),
value = rnorm(30),
time = rep(1:10, 3)
)

Load the ggplot2 library
library(ggplot2)

Create a line graph with multiple lines representing different groups
ggplot(data, aes(x = time, y = value, color = age, linetype = age)) +
geom_line() +
scale_color_manual(values = c("old" = "blue", "young" = "red", "infants" =
"purple")) +
scale_linetype_manual(values = c("old" = "solid", "young" = "dashed",
"infants" = "dotted")) +
labs(title = "Line Graph with Multiple Lines",
x = "Time",
y = "Value")

7. Annotate_code() function
askgpt("give an example when I can use annotate_code function and explain
why I need it")

✔ GPT is thinking ⠹ [6.4s]

Answer

It seems there might have been a misunderstanding as there is no standard function called
annotate_code() in R or common R packages. However, I can provide an example of when

you might want to incorporate annotations or comments in your code and clarify why they
are important:

1. Example Using Comment Annotation:

Suppose you have created a function in R to calculate the factorial of a number:

This function calculates the factorial of a given number
calculate_factorial <- function(n) {
if (n == 0) {
return(1) # The factorial of 0 is 1
} else {
return(n * calculate_factorial(n - 1)) # Recursively calculate the factorial
}
}

In this scenario: - The comments starting with # explain the purpose of the function and
provide details about specific lines of code. - Comments clarify the logic behind the
recursive factorial calculation process, aiding readability and understanding.

2. Importance of Annotation:
• Readability: Annotations or comments in code help you and others understand the

purpose and flow of the code, making it easier to maintain, update, and debug in the
future.

• Documentation: Annotations serve as documentation, providing insights into why
certain decisions were made while writing the code.

• Collaboration: If you work in a team or share your code with others, annotations
help colleagues understand your thought process and make collaboration more
efficient.

• Troubleshooting: Annotations can pinpoint potential issues or areas for
improvement in your codebase, streamlining the debugging process.

By incorporating annotations or comments in your R code, you enhance its clarity,
maintainability, and understandability for yourself and others who interact with the
codebase. It is a good practice in software development that helps foster effective
communication and documentation within the code.

8. Explain_code() function
askgpt("give an example when I can use explain_code function and explain
why I need it")

✔ GPT is thinking ⠧ [7.5s]

Answer

The explain_code() function is not a standard function in R programming or common R
packages. However, I can provide an example scenario where explaining or documenting
your code is crucial and why it is necessary in programming:

Example Scenario:

Suppose you have a complex function that performs sentiment analysis on text data in R.
The function takes a text input, preprocesses the text, analyzes the sentiment, and returns
the sentiment score. Here’s a simplified version of the sentiment analysis function:

Sentiment analysis function
analyze_sentiment <- function(text) {

Preprocess text data
cleaned_text <- tolower(text)
cleaned_text <- gsub("[^a-z]", " ", cleaned_text)

Analyze sentiment
sentiment_score <- some_sentiment_analysis_function(cleaned_text)

return(sentiment_score)
}

Importance of Explaining Code:
1. Clarity and Understanding:
• By including explanatory comments or using an explain_code() function, you can

provide insights into the purpose of the code, the logic behind specific steps, and
how different components work together. This helps both yourself and others
understand the code more effectively.

2. Documentation and Maintenance:
• Documenting your code through explanations ensures that future users (including

yourself) can easily comprehend what the code is doing without needing to decipher
complex implementations. It aids in maintaining and updating the codebase in the
future.

3. Collaboration and Team Communication:
• When working in a team or sharing code with colleagues, thorough explanations

within the code facilitate better collaboration. It allows team members to grasp the
functionality of the code, troubleshoot issues, and build upon existing work more
efficiently.

4. Troubleshooting and Debugging:
• Clear explanations and code documentation serve as valuable guides when

identifying and fixing bugs or errors in the code. They help you pinpoint
problematic areas more quickly and accurately.

By incorporating clear explanations within your code and utilizing functions like
explain_code() (if available through custom functions or packages), you enhance the
readability, maintainability, and overall quality of your codebase, leading to more efficient
development and collaboration processes.

9. Test_function()
askgpt("give an example when I can use test_function() and explain why I
need it")

✔ GPT is thinking ⠙ [10.2s]

Answer

While there isn’t a standard function called test_function() in R, I can provide an
example using testing frameworks like testthat to showcase the importance of testing
functions in programming:

Example Scenario:

Suppose you have a simple function that calculates the factorial of a given number in R:

Function to calculate the factorial of a number
calculate_factorial <- function(n) {
if (n == 0) {
return(1)
} else {
return(n * calculate_factorial(n - 1))
}
}

Now, let’s create a test case using the testthat package to verify that the
calculate_factorial function produces the correct output for various inputs:

library(testthat)

test_that("Factorial calculation test", {
expect_equal(calculate_factorial(0), 1)
expect_equal(calculate_factorial(3), 6)
expect_equal(calculate_factorial(5), 120)
})

Importance of Testing Functions:
1. Validation and Verification:
• Testing functions allow you to verify that your code functions correctly and

produces the expected output for a given set of inputs. It helps validate the logic and
functionality of your functions.

2. Regression Testing:
• By having test cases in place, you can ensure that future changes or updates to your

codebase do not inadvertently break existing functionality. Regression testing helps
maintain code stability.

3. Error Detection and Prevention:
• Testing functions help detect errors, bugs, or unexpected behavior in your code

early in the development process. It allows you to identify and fix issues before
deploying the code to production.

4. Code Confidence and Quality:
• Writing and running tests for your functions instills confidence in the reliability and

correctness of your code. It improves overall code quality and reduces the likelihood
of introducing errors.

5. Collaboration and Documentation:
• Test cases serve as documentation for how functions are intended to work, making

it easier for team members to understand and collaborate on the codebase.

By incorporating testing functionality into your coding process, you enhance the
robustness, maintainability, and quality of your code, leading to more reliable software
development practices.

10. Askgpt prompts:
askgpt("list a number of askgpt prompts used by r programmers")

✔ GPT is thinking ⠇ [5.6s]

Answer

Here are some example prompts that R programmers may use when interacting with
AskGPT to seek assistance, guidance, or information related to R programming:

1. “Can you explain the difference between vectors and lists in R?”
2. “How do I create a scatter plot in R using ggplot2?”
3. “What is the purpose of the dplyr package in R and how is it used for data

manipulation?”
4. “Explain the concept of data frames in R and their significance in data analysis.”
5. “How can I install and use the ggplot2 package for data visualization in R?”
6. “What are some best practices for optimizing R code performance?”
7. “Illustrate how to perform linear regression analysis in R using lm() function.”
8. “Can you provide an example of using the apply() function for data processing in R?”
9. “Explain the difference between read.table() and read.csv() functions for reading

data in R.”
10. “How can I subset data based on specific conditions using the dplyr package in R?”

These prompts cover a range of topics relevant to R programming, including data
manipulation, visualization, statistical analysis, package usage, and best practices. By
asking these questions, R programmers can enhance their understanding, improve their
coding skills, and effectively utilize R for data analysis and statistical tasks.

NB: These prompts are more conversational and answering the question WHY and WHAT -
barely the question HOW, in relation to your specific dataset, so you need another package if
you are more interested with HOW R programming prompts.

3. PACKAGE “AIR”
• Created by Professor Soumya Ray from the College of Technology Management at

National Tsing Hua University in Taiwan. It is available on CRAN.
• Designed exclusively for R-related queries (doesn’t support other programming

languages).
• The air R package provides R users with a chat-like feature akin to GitHub Copilot.
• Answers appear in your R console, not in your script unless you use R Notebook.
• The air package, available on CRAN, provides setup instructions on its GitHub

README page.
• Use air::set_key() as asecure method for storing OpenAI keys (via a pop-up

window)
• Use set_model() to choose models other than the default gpt-4.
• It offers two functions: howto() and whatis().

Make sure you define your OpenAI API key and request body before using “air”

First things first: Load Library “air”

library(air) # An AI Assistant to Write and Undestand R Code

1. Bar chart:howto()

You must connect an OpenAI API key before using the howto() function.

howto(“Create a bar chart in R where the bars are colored (steel blue, green, orange and
yellow)and the bars are ordered by descending Y value and print it”)

howto("Create a bar chart in R where the bars are colored (steel blue, green,
 orange and yellow)and the bars are ordered by descending Y value and
 print it")

```R
Create a sample dataset
df <- data.frame(
category = c("A", "B", "C", "D"),
value = c(20, 35, 15, 45)
)

https://cran.r-project.org/web/packages/air/index.html
https://github.com/soumyaray/air
https://github.com/soumyaray/air

Reorder the dataframe by descending Y value
df <- df[order(-df$value),]

Create the bar plot with specified colors
barplot(df$value, names.arg = df$category, col = c("steelblue", "green",
"orange", "yellow"), main = "Bar Chart", xlab = "Category", ylab = "Value")
```

Check if the askgpt solution works (the results may be different everytime you run the
prompt)

library(ggplot2)
data <- data.frame(
 category = c("A", "B", "C", "D"),
 value = c(10, 8, 6, 4),
 color = c("steelblue", "green", "orange", "yellow")
)
data <- data[order(-data$value),]

ggplot(data, aes(x = category, y = value, fill = color)) +
 geom_bar(stat = "identity") +
 theme_minimal()

2. Line graph:howto()

howto(“Create a line graph in R with multiple lines representing different groups (old,
young, infants), each with different colours and style. Print the results as output in R
Notebook”)

howto("Create a line graph in R with multiple lines representing different
 groups (old, young, infants), each with different colours and style.
 Print the results as output in R Notebook")

```{r}
Create sample data
set.seed(123)
df <- data.frame(
age = rep(1:10, 3),
group = rep(c("old", "young", "infants"), each = 10),
value = c(rnorm(10, 10, 2), rnorm(10, 15, 2), rnorm(10, 5, 1))
)

Load required library
library(ggplot2)

Create the line graph
ggplot(df, aes(x = age, y = value, color = group, linetype = group)) +
geom_line() +
labs(title = "Line Graph with Multiple Groups",
x = "Age",
y = "Value") +
scale_color_manual(values = c("red", "blue", "green")) +
scale_linetype_manual(values = c("solid", "dashed", "dotted"))
```

Check if the askgpt solution works (the results may be different everytime you run the
prompt)

Sample data
set.seed(123)
df <- data.frame(
 age = rep(1:10, 3),
 group = rep(c("old", "young", "infants"), each = 10),
 value = c(rnorm(10, 20, 5), rnorm(10, 25, 5), rnorm(10, 15, 3))
)

Load required library
library(ggplot2)

Line plot
ggplot(df, aes(x = age, y = value, color = group, linetype = group)) +
 geom_line() +

graph:howto

 scale_color_manual(values = c("red", "blue", "purple")) +
 scale_linetype_manual(values = c("solid", "dashed", "dotted"))

3. Scatter plot:howto()

howto(“Produce a scatter plot in R with customized point shapes and colors based on a
categorical variable, name the variables (cats, dogs, horses, cows) and produce a key. Print
the results as output in R Markdown.”)

howto("Produce a scatter plot in R with customized point shapes and colors
 based on a categorical variable, name the variables (cats, dogs,
horses,
 cows) and produce a key. Print the results as output in R Markdown.")

```{r}
Create sample data
data <- data.frame(
x = rnorm(100),
y = rnorm(100),
category = sample(c("cats", "dogs", "horses", "cows"), 100, replace =
TRUE)
)

Create scatter plot with customized point shapes and colors
plot(data$x, data$y, col = ifelse(data$category == "cats", "red",
ifelse(data$category == "dogs", "blue", ifelse(data$category == "horses",
"green", "purple"))), pch = ifelse(data$category == "cats", 1,

ifelse(data$category == "dogs", 2, ifelse(data$category == "horses", 3, 4))),
xlab = "X", ylab = "Y")

Create legend
legend("topright", legend = unique(data$category), col = c("red", "blue",
"green", "purple"), pch = c(1, 2, 3, 4), title = "Category")
```

Check if the askgpt solution works (the results may be different everytime you run the
prompt)

Sample data
animals <- data.frame(
 x = rnorm(100),
 y = rnorm(100),
 type = sample(c("cats", "dogs", "horses", "cows"), 100, replace = TRUE)
)

Scatter plot
plot(animals$x, animals$y, col = ifelse(animals$type == "cats", "red",
 ifelse(animals$type == "dogs", "blue",
 ifelse(animals$type == "horses", "green", "yellow"))),
 pch = ifelse(animals$type == "cats", 1,
 ifelse(animals$type == "dogs", 4,
 ifelse(animals$type == "horses", 5, 8))),
 main = "Animal Scatter Plot",
 xlab = "X-axis",
 ylab = "Y-axis")
legend("topright", legend = unique(animals$type), pch = c(1, 4, 5, 8),
 col = c("red", "blue", "green", "yellow"), title = "Types")

4. Package “air”:whatis(ggplot2 package)
whatis("ggplot2 package")

The ggplot2 package is a popular data visualization package in R that
allows users to create a wide variety of plots.

Explanation of the overall code:
1. The ggplot() function initializes a ggplot object.
2. The aes() function specifies the mappings between variables in your
dataset and elements of the plot, such as x and y axes or colors.
3. The geom_bar() function adds a bar layer to the plot, making a bar
plot.

Explanation of sub-expressions:
- ggplot(data = df): Initializes a ggplot object with the specified
dataset `df`.
- aes(x = category, y = count, fill = category): Specifies that the
'category' variable should be mapped to the x-axis, the 'count' variable to
the y-axis, and the fill color of the bars.
- geom_bar(stat = "identity"): Adds a bar layer to the plot, where the
height of the bars represents the value of the 'count' variable.

Example:
```R
library(ggplot2)

Create a sample data frame

df <- data.frame(category = c("A", "B", "C", "D"),
count = c(10, 20, 15, 25))

Create a bar plot
ggplot(data = df, aes(x = category, y = count, fill = category)) +
geom_bar(stat = "identity")
```

Output:
This code will generate a bar plot with bars representing the count values
for each category (A, B, C, D).

5. Package “air”:whatis(RTutor gpt library)
whatis("RTutor gpt library")

The overall code seems to be related to using the RTutor package in R
which allows creating interactive tutorials for teaching purposes. The
specific function being used here is likely related to the generation of a
Gaussian Process Tree (gpt) model within an RTutor tutorial.

1. `library(RTutor)`: This line loads the RTutor package into the current
R session, allowing you to create interactive tutorials.

2. `library(gpt)`: This line loads the gpt package into the current R
session, which likely contains functions for building Gaussian Process Tree
models.

Example:
```R
library(RTutor)
library(gpt)
```

This code loads the RTutor and gpt packages into the R session.

6. Package “air”:whatis(TheOpenAir package)
whatis("TheOpenAir package")

TheOpenAir package is a collection of tools for the analysis of air
pollution data. It provides functions for importing, manipulating, and
visualizing air quality data.

Overall code explanation:
- TheOpenAir package is used in R for the analysis of air pollution data.
- It provides functions for importing, manipulating, and visualizing air
quality data.
- It allows users to generate various types of plots and summary

statistics to explore and understand air pollution data.

Sub-expression explanation:
1. **library(TheOpenAir)**: This code loads the OpenAir package into the
current R session, making all its functions available for use.

Example:
```R
library(TheOpenAir)
```

Output:
No output is generated by loading the package, but it allows you to use
the functions provided by TheOpenAir package.

7. Package “air”:whatis(gptchatteR library for chatgpt)
whatis("gptchatteR library for chatgpt")

This R code snippet likely loads a library named "gptchatteR" for working
with ChatGPT, a popular conversational AI model.

- `library(gptchatteR)`: This line loads the "gptchatteR" library, which
provides functions for interacting with ChatGPT.

Example:
```r
library(gptchatteR)
```

8. Package “air”:whatis (ask_gpt)
whatis ("ask_gpt library available at https://github.com/cran/askgpt")

The given code uses the "ask_gpt" library, which is not a standard R
package and needs to be installed from GitHub using the link provided. The
library is likely used for interacting with the GPT-3 (Generative Pre-trained
Transformer 3) API for natural language processing tasks.

- Overall code: Utilizes the "ask_gpt" library for natural language
processing tasks, likely involving the GPT-3 model.

- Sub-expression explanation:

1. `ask_gpt::complete_prompt("Hello, world!")`: Sends the prompt "Hello,
world!" to the GPT-3 model to generate a completion based on the input
prompt.

- Example:

```R
library(ask_gpt)

output <- ask_gpt::complete_prompt("Hello, world!")
print(output)
```

Output:
```
[1] "The generated completion based on the input prompt."
```

9. Package “air”:whatis(gpttools)
whatis("gpttools from JamesHWade/gpttools GitHub repo or R Universe")

The code you provided seems to be calling a function or package named
`gpttools` from a GitHub repository owned by JamesHWade. It is not clear what
specific functionality the `gpttools` package provides, as that would depend
on the content of the GitHub repository.

Without further information on the purpose and design of the `gpttools`
package, it is difficult to explain the specific sub-expressions within the
code snippet you provided.

To elaborate on the overall code, it appears to be a simple request to
access the `gpttools` package from a specific GitHub repository hosted by
JamesHWade. This is a common way to install packages from GitHub repositories
directly in R using the `devtools` package.

Unfortunately, without more context or the specific content of the
`gpttools` package, it is not possible to provide example inputs or outputs.

In summary, the code makes use of the `devtools` package in R to install
the `gpttools` package from a specific GitHub repository, but the specific
functionality or purpose of the `gpttools` package is not detailed in the
provided code.

10. Package “air”:whatis(gtpchatter)
whatis("the advantage of the advantage of the gtpchatter downloadable
 from github: isinaltinkaya/gptchatteR")

This R code is designed to download a package called 'gptchatteR' from a
GitHub repository owned by 'isinaltinkaya'. The package likely provides
functionalities related to GPT (Generative Pre-trained Transformer) models
for natural language processing tasks.

Explanation of the code:

1. `if (!require("remotes")) install.packages("remotes")`: Checks if the
'remotes' package is already installed, and if not, it installs the package
to enable installation from remote sources.
2. `remotes::install_github("isinaltinkaya/gptchatteR")`: Uses the
'remotes' package to install the 'gptchatteR' package from the GitHub
repository owned by 'isinaltinkaya'.

Example:
```R
if (!require("remotes")) install.packages("remotes")
remotes::install_github("isinaltinkaya/gptchatteR")
```

Output:
The 'gptchatteR' package will be downloaded and installed from the GitHub
repository.

11. Package “air”:whatis(best ChatGTP Temperature)

whatis(“The OpenAI API incorporates a hyperparameter known as temperature that affects
the computation of token probabilities when generating output through the large language
model. The temperature value ranges from 0 to 2, with lower values indicating greater
determinism and higher values indicating more randomness.What is the best OpenAI
temperature for R programming”)

whatis("The OpenAI API incorporates a hyperparameter known as temperature
that
 affects the computation of token probabilities when generating output
 through the large language model. The temperature value ranges
 from 0 to 2, with lower values indicating greater determinism and
 higher values indicating more randomness.What is the best OpenAI
 temperature for R programming")

This R code snippet generates random text output using the OpenAI API with
a specified temperature value.

Here is a breakdown of the sub-expressions:
1. `install.packages("openai")`: Installs the "openai" package in R, which
allows us to interact with the OpenAI API.
2. `library(openai)`: Loads the "openai" package into the R session.
3. `openai$set_api_key("YOUR_API_KEY")`: Sets the API key to authenticate
with the OpenAI service. Replace `"YOUR_API_KEY"` with your actual API key.
4. `response <- openai$complete(prompt = "Once upon a time", model =
"text-davinci-003", temperature = 0.5)`: Generates text completion for the
prompt "Once upon a time" using the specified model ("text-davinci-003") and
temperature (0.5). The temperature parameter controls the randomness of the
generated text output.
5. `output <- response$data$text`: Extracts the generated text from the

response object.

Example:
```R
install.packages("openai")
library(openai)

openai$set_api_key("YOUR_API_KEY")

response <- openai$complete(prompt = "Once upon a time", model = "text-
davinci-003", temperature = 0.5)
output <- response$data$text

print(output)
```
Output:
"Once upon a time there was a little boy who lived in a small village. He
was always curious and adventurous, and he loved to explore the world around
him. One day, he decided to go on a journey to find the magical treasure that
was said to be hidden in the forest. As he journeyed through the dense woods,
he encountered many obstacles and challenges, but he never gave up. Finally,
after days of searching, he stumbled upon a glittering chest filled with gold
and jewels. The little boy couldn't believe his luck and he danced with joy,
knowing that his bravery and determination had led him to the greatest
treasure of all."

	Session One: Setup and Packages “askgpt” and “air”
	1. OPENAI CHAT GPT SETUP
	Step 1: Obtain API Key
	Step 2: Load Necessary Libraries:
	Step 3: Define your OpenAI API key and request body:
	Step 4: Test request completion:

	2. PACKAGE ASKGPT
	1. The most important setting, however, is askgpt_config
	2. Get to know each other:
	3. Login help:
	4. You are new to Rstudio and have no idea where to start:
	5. Remind chatGPT that you are an 8-year-old:
	6. Knit problems with askgpt:
	7. Ask a coding question and save as a variable:
	7. Annotate_code() function
	8. Explain_code() function

	Example Scenario:
	Importance of Explaining Code:
	9. Test_function()

	Example Scenario:
	Importance of Testing Functions:
	10. Askgpt prompts:

	3. PACKAGE “AIR”
	1. Bar chart:howto()
	2. Line graph:howto()
	3. Scatter plot:howto()
	4. Package “air”:whatis(ggplot2 package)
	5. Package “air”:whatis(RTutor gpt library)
	6. Package “air”:whatis(TheOpenAir package)
	7. Package “air”:whatis(gptchatteR library for chatgpt)
	8. Package “air”:whatis (ask_gpt)
	9. Package “air”:whatis(gpttools)
	10. Package “air”:whatis(gtpchatter)
	11. Package “air”:whatis(best ChatGTP Temperature)

