#### Workshop topics

What is missing data?

# NSC R workshop

Stef van Buuren

Apr 28, 2022 - ZOOM

#### Problem of missing data

- Strategies to deal with missing data
- Multiple imputation methodology to analyse incomplete data
- Using R package mice

- Van Buuren, S. and Groothuis-Oudshoorn, C.G.M. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1–67. https://www.jstatsoft.org/article/view/v045i03
- Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman & Hall/CRC, Boca Raton, FL. Free text: https://stefvanbuuren.name/fimd Order book: https://www.crcpress.com/Flexible-Imputation-of-Missing-Data-Second-Edition/Buuren/p/book/9781138588318



#### Motivation

- Real data are always incomplete
- Ad-hoc fixes do not (always) work
- Multiple imputation as principled and broadly applicable approach
- Goal: get comfortable with a powerful way to deal with incomplete data
- ▶ We use the mice package in R

Missing data are concealed from us, and that very fact means we are at risk of misunderstanding, of drawing incorrect conclusions, and of making poor decisions.

#### Challenger space shuttle - 28 Jan 1986 - 7 deaths



#### Challenger space shuttle - 28 Jan 1986 - 7 deaths

#### Figure 1.1 (a) Data examined in the pre-launch teleconference; (b) Complete data.



#### Further characterization of missing values

#### Missing values are those values that are not observed

Values do exist in theory, but we are unable to see them



# Strategies to deal with missing data

# Listwise deletion, complete-case analysis

#### Listwise deletion, complete-case analysis

- Prevention
- Ad-hoc methods
- Weighting methods
- Likelihood methods, EM-algorithm
- Multiple imputation

- Analyze only the complete records
- Advantages
  - Simple (default in most software)
  - Unbiased under MCAR
  - Conservative standard errors, significance levels
  - Two special properties in regression

Disadvantages

- Wasteful
- May not be possible
- Larger standard errors
- Biased under MAR, even for simple statistics like the mean
- Inconsistencies in reporting

#### Mean imputation

Regression imputation

#### Mean imputation

- Replace the missing values by the mean of the observed data
- Advantages
  - Simple
  - Unbiased for the mean, under MCAR



- Disadvantages
  - Disturbs the distribution
  - Underestimates the variance
     Biases correlations to zero
  - Biases correlations to
     Biased under MAR
  - Blased under WIAR
- AVOID (unless you know what you are doing)

#### Regression imputation

- Also known as prediction
  - ► Fit model for Y<sup>obs</sup> under listwise deletion
  - ▶ Predict  $Y^{mis}$  for records with missing Y's
  - Replace missing values by prediction
- Advantages
  - Under MAR, unbiased estimates of regression coefficients
  - Good approximation to the (unknown) true data if explained variance is high
- Favourite among data scientists and machine learners



#### Regression imputation

#### Disadvantages

- Artificially increases correlations
- Systematically underestimates the variance
- Too optimistic P-values, too short confidence intervals
- ► AVOID. Harmful to statistical inference

#### Stochastic regression imputation

- Like regression imputation, but adds appropriate noise to the predictions to reflect uncertainty
- Advantages
  - $\blacktriangleright$  Preserves the distribution of  $Y^{\rm obs}$
  - Preserves the correlation between Y and X in the imputed data

#### Stochastic regression imputation



#### Stochastic regression imputation

Disadvantages

- Symmetric and constant error restrictive
- Single imputation incorrectly treats imputations as real data
- Not so simple anymore

#### Overview of assumptions needed

|            |      | Unbiased   |             | Standard Error |
|------------|------|------------|-------------|----------------|
|            | Mean | Reg Weight | Correlation |                |
| Listwise   | MCAR | MCAR       | MCAR        | Too large      |
| Pairwise   | MCAR | MCAR       | MCAR        | Complicated    |
| Mean       | MCAR | -          | -           | Too small      |
| Regression | MAR  | MAR        | -           | Too small      |
| Stochastic | MAR  | MAR        | MAR         | Too small      |
| LOCF       | -    | -          | -           | Too small      |
| Indicator  | -    | -          | -           | Too small      |

#### Multiple imputation

## Acceptance of multiple imputation



Variation between the *m* imputed values reflects our ignorance about the true value



#### Multiple imputation



Incomplete data Imputed data Analysis results Pooled result

#### Three sources of variation

In summary, the total variance T stems from three sources:

- *Ū*, the variance caused by the fact that we are taking a sample rather than the entire population. This is the conventional statistical measure of variability;
- 2.  ${\it B},$  the extra variance caused by the fact that there are missing values in the sample;
- 3. B/m, the extra simulation variance caused by the fact that  $\bar{Q}_m$  itself is based on finite m.

#### Multiple imputation

Advantages

- Correct point and variance estimates
- Splits missing data problem from complete-data analysis
- Theoretical properties well established
- Flexible, widely applicable
- Extensible to MNAR

#### Disadvantages

- Need to create and work with multiple imputed data sets
- May not always be most efficient

# Statistical inference for $\bar{Q}(1)$

## Statistical inference for $\bar{Q}$ (2)

The  $100(1 - \alpha)\%$  confidence interval of a  $\overline{Q}$  is calculated as

$$\bar{Q} \pm t_{(\nu,1-\alpha/2)}\sqrt{T}$$
,

where  $t_{(\nu,1-\alpha/2)}$  is the quantile corresponding to probability  $1 - \alpha/2$  of  $t_{\nu}$ .

For example, use t(10, 0.975) = 2.23 for the 95% confidence interval for  $\nu = 10$ .

Suppose we test the null hypothesis  $Q = Q_0$  for some specified value  $Q_0$ . We can find the *P*-value of the test as the probability

$$P_s = \Pr\left[F_{1,\nu} > \frac{(Q_0 - \bar{Q})^2}{T}\right]$$

#### where $F_{1,\nu}$ is an F distribution with 1 and $\nu$ degrees of freedom.

#### How large should *m* be?

Classic advice: m = 3, 5, 10. More recently: set m higher: 20–100. Some advice:

- Use m = 5 or m = 10 if the fraction of missing information is low,  $\gamma < 0.2$ .
- Develop your model with m = 5. Do final run with m equal to percentage of incomplete cases.

Generic workflow in mice

## 4 3

## 6



| <pre>library("mice") head(nhanes)</pre> |   |     |      |     |     |  |  |  |  |  |
|-----------------------------------------|---|-----|------|-----|-----|--|--|--|--|--|
| ##                                      |   | age | bmi  | hyp | chl |  |  |  |  |  |
| ##                                      | 1 | 1   | NA   | NA  | NA  |  |  |  |  |  |
| ##                                      | 2 | 2   | 22.7 | 1   | 187 |  |  |  |  |  |
| ##                                      | 3 | 1   | NA   | 1   | 187 |  |  |  |  |  |

1 20.4

3

NA NA

NA NA 184

NA NA 1 113

# Inspect the trace lines for convergence



## Fit the complete-data model

fit <- with(imp, lm(bmi ~ age))
est <- pool(fit)
summary(est)</pre>

| ## |   | term        | estimate | std.error | statistic | df   | p.valu@  |
|----|---|-------------|----------|-----------|-----------|------|----------|
| ## | 1 | (Intercept) | 30.5     | 2.45      | 12.46     | 7.2  | 3.94e-0€ |
| ## | 2 | age         | -2.1     | 1.12      | -1.87     | 10.8 | 8.89e-02 |

# Inspect missing data pattern

#### md.pattern(nhanes)



# Stripplot of observed and imputed data

stripplot(imp, pch = 20, cex = 1.2)

## Multiply impute the data

#### imp <- mice(nhanes, print = FALSE, maxit=10, seed = 24415)</pre>

## Stripplot of observed and imputed data

|                      |   |    | a          | ge         |    |     | ] [                  |                                            |   | b   | mi           |             |    |
|----------------------|---|----|------------|------------|----|-----|----------------------|--------------------------------------------|---|-----|--------------|-------------|----|
| - 3                  |   |    | -          | •          | •  | •   | - 32                 | •                                          | • | •   | •            | •           |    |
|                      |   |    |            |            |    |     |                      | •                                          | • |     | •            | •           | •  |
| - 5                  |   |    |            |            |    |     |                      |                                            |   |     |              |             | -  |
| ۰.                   | _ | _  |            | _          | -  | _   | ~ T                  | 1                                          |   | •   |              |             |    |
| ~ ~                  | - | -  | -          |            |    | -   |                      | - <b>1</b> .                               |   |     | - <b>*</b> - | 1           | *  |
| 2-                   |   |    |            |            |    |     | 18 -                 | •                                          |   |     | •*           | •           | •  |
|                      |   |    |            |            |    |     |                      | \$                                         | 2 | 1   | ¥.           |             | 5- |
| 2-                   | • | -  |            | •          | -  | -   | 8-                   | •                                          |   | •   | •            |             | •• |
|                      | 0 | 1  | 2          | 3          | 4  | 5   |                      | 0                                          | 1 | 2   | 3            | 4           | 5  |
|                      |   |    |            |            |    |     |                      |                                            |   |     |              |             |    |
|                      |   |    | h          | ур         |    |     | 4 4                  |                                            |   | c   | hl           |             |    |
| 5.0                  | - | •• | 17<br>     | <u>yp</u>  | •• |     | 11                   | •                                          | • | ••  | •            | •           | •  |
| 18 2.0               | • | •• | •          | <u>wp</u>  | •  | ••• | 8-                   | •                                          | • | ••  | •            | ٠           | •  |
| 18 2.0               | • | •• | h          | <u>w</u>   | •  | ••  | - 32                 | •                                          | • | ••  | •            | •           | :  |
| 1.6 1.8 2.0          | - | ** | h          | <u>•••</u> | •  | ••• | -38                  |                                            | • | ••• | ni<br>•      |             |    |
| 1.6 1.8 2.0          | - | •• | h          | <u>yp</u>  | •• | ••• | 200 250              |                                            | : | •   | ni<br>•      | •           |    |
| 14 1.6 1.8 2.0       | - | ** |            | <u>vp</u>  | *  | ••• | 200 250              |                                            | • | •   | ni<br>•<br>• | •           | :  |
| 12 14 15 18 20       |   | •• | <u>- h</u> | <u>w</u>   | •• | ••• | 150 200 250<br>1 1 1 | ·<br>· · · · · · · · · · · · · · · · · · · |   | ••• | ni<br>•<br>• | •<br>•<br>• | •  |
| 10 12 14 1.6 1.8 2.0 | • | -  | -          | <u>*</u>   | -  | -   | 150 250 250          | •                                          |   | •   | •            | •<br>•<br>• | •  |

Relation between temperature and gas consumption

# 

# We delete gas consumption of observation 47



# Predict imputed value from regression line



# ${\sf Predicted} \ {\sf value} + {\sf noise}$



## Predicted value + noise + parameter uncertainty



# Imputation based on two predictors



# Drawing from the observed data



# Predictive mean matching





# PMM: Predicted given 5°,C, 'after insulation'

PMM: Define a matching range  $\hat{y} \pm \delta$ 





Temperature (°C)

PMM: Select potential donors



# PMM: Bayesian PMM: Draw a line



# PMM: Define a matching range $\hat{y} \pm \delta$



# PMM: Select potential donors



# Built-in imputation functions

https://amices.org/mice/reference/index.html

# Creating multivariate imputations, MICE algorithm

## Fully conditional specification (FCS), MICE algorithm

# Imputation by fully conditional specification

Imputation by fully conditional specification

- ▶ The predictors Y<sub>-j</sub> themselves can contain missing values;
- "Circular" dependence can occur, where  $Y_i^{\text{mis}}$  depends on  $Y_h^{\text{mis}}$ , and vice versa;
- Especially with large *p* and small *n*, collinearity or empty cells can occur;
- Derived variables:
- ▶ The ordering of the rows and columns can be meaningful, e.g., as in longitudinal data;
- Imputation can create impossible combinations, such as pregnant grandfathers.

- Imputes multivariate missing data on a variable-by-variable basis
- Requires a specification of an imputation model for each incomplete variable
- Creates imputations per variable in an iterative fashion



#### Imputation by fully conditional specification



# Imputation by fully conditional specification





# Imputation by fully conditional specification - next iteration



# Imputation by fully conditional specification - next iteration







## How many iterations?

Quick convergence

More iterations is \u03c6 is high
 Inspect the generated imputations
 Monitor convergence to detect anomalies

► 5–10 iterations is adequate for most problems

Non-convergence

More R code and examples

## Convergence



Conclusion

Watch out for situations where

Number of iterations

- ▶ the correlations between the Y<sub>j</sub>'s are high;
- the missing data rates are high; or
- constraints on parameters across different variables exist.

► GitHub site: https://github.com/amices/mice

Missing data are a fact of life, and actually interesting

- There are many ways to treat missing data, only few are valid
- Always try to prevent missing data
- Use ad-hoc methods with caution
- Multiple imputation is an all-round general purpose method
- Many applications possible

That's it!

